The University of Texas at Austin
Electrical and Computer
Engineering
Cockrell School of Engineering

Spring 2023

ADVANCED TOPICS IN
COMPUTER VISION

Atlas Wang
Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin
https://vita-group.github.io/

(©) 2 NI)

ML researchers like to go BIG

Big NNs seem to be more |
capable at everything... Parameters

...\While the world prefers going TINY

Edge Al chips market trend

B Smartphone m Tablet Speaker ~ m Wearable Enterprise edge
2020
2
2024
o
0 200 400 600 800 1,000 1,200 1,400 1,600

(million US$)

Phones Speakers Watches Cameras Sensors Drones
[Deloitte’19]

" 091
" 002
" o.01
" oo

Deep Learning on a Budget

Three Top Concerns:
e Storage and Memory
* Speed or Latency
* Energy Efficiency

M (3533 C3531
3530 C3532

The three goals all pursue “light weight”
.. but they are often not aligned*

Common carbon footprlnt benchmarks

* ... 50 need to consider all in implementation i s of CO2 equivalent
. . Roundtrip fli /W and SF (1 -
* ... and for both Inference and Training passengen ol |Im4
Human life (avg. 1 year) 11,023
American life (avg. 1 year) . 36,156

. hlfi;;rei?cudingfue\|ja'v'g,1
* Broad economic viability requires energy efficient Al ™

Transformer (213M parameters)
w/ neural architecture search

Energy efficiency of a brain is 100x better than

current SOTA hardware!

* Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE ISSCC 2016

Model Compression

Training Phase:

o The easiest way to extract a lot of knowledge from the training data is to learn many different
models in parallel.

o 3B: Big Data, Big Model, Big Ensemble
o Imagenet: 1.2 million pictures in 1,000 categories.
o AlexNet: ~ 240Mb, VGG16: ~550Mb
Testing Phase:
o Want small and specialist models.

o Minimize the amount of computation and the memory footprint.
o Real time prediction
O

Even able to run on mobile devices.

Two Main Streams

* “Transfer”: How to transfer knowledge from big general model (teacher) to small
specialist models (student)?
* Example: “Distilling the Knowledge in a Neural Network”, G. Hinton et. al., 2015

* “Compress”: How to reduce the size of the same model, during or after training,
without losing much accuracy.

* Example: “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding”, S. Han et. al., 2016

* Comparison: Knowledge Transfer provides a way to train a new small model
inheriting from big general models, while Deep Compression Directly does the

surgery on big models, using a pipeline: pruning, quantization & Huffman coding.

Knowledge Transfer/“Distillation”: Main Idea

e Introduce “Soft ta rgets” as one e Hard Target: the ground truth label (one-hot vector)

way to transfer the knowledge ® Soft Target: exp(z/T) T is “temperature”, z is logit

from big models. 1T S ean(z;/T)

e Classifiers built from a softmax
function have a great deal

e More information in soft targets

cow dog cat car

more information contained in = 1 - o] original hard
them than just a classifier; iBrgeLs
: : cow dog cat car
* The correlations |.n the softmax 3 : o ise o o
outputs are very informative. - - 005] " of ensemble

Hinton’s Observation: If we can extract the knowledge from the data using very big models or
ensembles of models, it is quite easy to distill most of it into a much smaller model for deployment.

More follow-up observations: teachers can be weak, or even the same as student ...

after pruning

o
o ¥ o 2
£ Q € o
c @© C =
=5 = S5 2
= Dy - O
Q ®» =

—
0 smm——
N

-
e

i (O
A O
U O
| —
Q
E o
e

O

Deep

Compression
Main Idea (ii)

Retrain to Recover Accuracy

e N
Train Connectivity
. J
L 2
e a
Prune Connections
o _J
L 2
& A
Train Weights
\ >/

-O-L2 regularization w/o retrain
L1 regularization w/ retrain
~®-| 2 regularization w/ iterative prune and retrain

“4-L1 regularization w/o retrain
“O-L2 regularization w/ retrain

40% 50% 60% 70%

80% 90% 100%

Parametes Pruned Away

Network pruning can save 9x to 13x parameters without drop in accuracy

Weight Sharing (Trained Quantization)

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

-0.98 | 1.48 | 0.09 30| 2|1 3:- .

Dee p 0.05 | -0.14 | -1.08 cluster | 1 1 | o | 3 | 2| %80 i 1.48
Compression: ao 8] 0 1w~ | 0 | o | 1| o | jam l 200

Main Idea (iii) — LT [T

gradient

roup by 0.03 -0.02 reduce

=

g
8
Ik
g
:
8

-0.02 -0.01|-0.02 | -0.01

g

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)

Huffman Coding

Deep

Quantization: less precision Huffman Encoding
. Pruning: less quantty
O > i = R S - - ~
Compression — T o \
c Pd N | | Cluster the Weights] | \
. : | @ N \ : L o : | £ 5 :
I | Train Connectivity ! 1 i 1
YENREERGY o | J e T | [eresema] | ,,,
1 Generate Code Book |
network L <z " Iaccuracy: ' :accuracy : _ / ,accuracy
| | Prune Connections : 1 T I | 1
100% Size; \ o) || 110% Size} (Quantize the Weigmﬂ 13.7% Size | o ~ !
! 1 : 1 I |
: s . . N : : (with Code Book : " Encode Index 1 35x-50x
\ | Train Weights ! * & S2 , R y :reduction
1
k™ i B : Retrain Code Book : |\]
> -
s e e e \\ \ /’ N e e o /

* Determining low-saliency parameters, given a pre-trained network

* Follows the framework proposed by LeCun et al. (1990):

Train Connectivity

1. Train a deep model until convergence % b \
2. Delete “unimportant” connections w.r.t. a certain criteria k""‘“’ °°""°°"°"‘J
M ore A b out 3. Re-train the network : T y

4. Iterate to step 2, or stop | Meamegos

* Defining which connection is unimportant can vary
* Weight magnitudes (L?, L}, ...)

before pruning after pruning

* Mean activation [Molchanov et al., 2016]
Avg. % of Zeros (APoZ) [Hu et al., 2016]
Low entropy activation [Luo et al., 2017]

pruning
synapses

-——

pruning
- -
neurons

1000 Trillion

Synapses \
50 Trillion 500 Trillion

Human Brain Synapses Synapses
Prunes too! &

Newborn 1 year old Adolescent

Network pruning perturbs weights W by zeroing some of them

How the loss L would be changed when W is perturbed?

OBD approximates L by the 2" order Taylor series:

Optimal Brain T DECO S S S i vt g0

Sw + =
2 ; 8’(1)7;2 wz+2 — 8’(018’11)]

o \ V)

Damage (OBD)

1st order 2nd§rder

/

Problem: Computing H = (aw‘?gw,) is usually intractable
PO i

* Requires 0(n?) on # weights

* Neural networks usually have enormous number of weights

- e.g. AlexNet: 60M parameters = H consists ~ 3.6 x 101 elements

Problem: Computing H = (a aé’) is usually intractable
Wi /i,

Two additional assumptions for tractability

1. Diagonal approximation: H = L —q if =

8wiawj

2. Extremal assumption: 9 =(Vi

* W would be in a local minima if it’s pre-trained

Optimal Brain

Damage (OBD)

1 o’L . 3
* Now we get: 0L ~ 5 8w-25wi + O(||[oW||?)
* It only needs diag(H) := (%)

diag(H) can be computed in 0(n), allowing a backprop-like algorithm
* For details, see [LeCun et al., 1987]

How the loss L would be changed when W is perturbed?

1 2L 1
L(6W) ~ 5 gw.25wi2 =: Z éhiiéwf

1
The saliency for each weight = s; == §hii|wi|2 s; = |w;|

/

OBD shows robustness on pruning compared to magnitude-based deletion

Optimal Brain

After re-training, the original test accuracy is recovered

Damage (OBD)

16. 16,

14} (a) 14] (b)
12 12}
10} Magnitude 10} w/o re-training
m 84 w 84
‘g 6] ‘g 6}
4] 20 41
g g
= 2 = 2l
0t 0 w/ re-training
2 -2

0 500 1000 1500 2000 2500 S00 1000 1500 2000 2500
Parameters Parameters

=

Structured

Sparsity

“Un-structured” weight-level pruning may not engage a practical speed-up

* Despite of extremely high sparsity, actual speed-ups in GPU is limited

sparsity = percentage of zeros

215 o :
= 1 / B l EJQuadro K600
)
g,_ = ETesla K40c
YN § CIGTX Titan
- v1 ~“@-Sparsity
| :

convl conv2 convd conv4 convs

Speed-up ratio of weight-level pruning

Non-structured sparsity (poor data pattern)

Stl uctm ed Spdl 51ty (1 egulal data pattel n)

B ,l. ' i 1
R i in e 1

i i

l!‘ll! 3

SxspeedupaﬁrrconuﬂenanonotnonZCN)NﬂNsandcohunns

* Structured sparsity can be induced by adding group- Iasso regularization

min £(W +A§:R (W), }Hmﬁmz
W
=1
* Filter-wise and channel-wise: #filters i channels
l l
SR Ry(W®) = SV W+ RS W,
S p a rS |ty Table 1: Results after penalizing unimportant filters and channels in LeNert
LeNet # Error Filter#° Channel #° FLOP * Speedup *
| (baseline) 0.9% 20—50 1—20 100%—100% 1.00x—1.00x
2 0.8% 5—19 1—4 25%—71.6% 1.64x—35.23 %
3 1.0% 3—12 1—3 15%—3.6% 1.99x—7.44 x

S
*In the order of convI—conv2

Lener 1 G (5 50 [1 P) 0 0 S R I 9 S 1

venvet 2 [N I N O O = T S
Levees [IFEEEEEEN =N

Fewer but smoother feature extractors

A A A

train then sparsify sparsify during training sparse training
_‘C....” (including iterative sparsification) (including regrowth)
3
3
G
(@)
@
0
£
-}
c

> - . > >
T iterations

Figure 7: Overview of structural sparsification schedules.

S p a rS Ity b eyo n d * Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A.

(2021). Sparsity in Deep Learning: Pruning and growth for

p OSt_t ralnin g efficient inference and training in neural networks. J. Mach.

Learn. Res., 22(241), 1-124.

compression

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

Lottery

TI C k et Original network Winning Ticket
Hypothesis

* Winning Ticket gives
* Better or same results
+ Shorter or same training time
* Notably fewer parameters
* Is trainable from the beginning

Prune p%

—> Mask m

f(x, m O 6,)
f(x; 6,)

Frankle, Jonathan, and Michael Carbin. “The lottery ticket hypothesis: Finding sparse, trainable neural networks.” ICLR 2019

Searching for Tickets: lterative Magnitude Pruning

W

Lottery
Ticket

Hypothesis

m) ® Wy m™ o W(n+1) m™t) o W(n+1)

AT R

Iterate..

Gradient-

Structured Unstructured Magnitude
Based

Learned
Local

Summary of

. Global Information-
Pruning
Before
Training

When to prune?

During After

. One-Shot lterative
Training Training

* Sparsity distribution. The simplest is “uniform” - every layer has the same
sparsity. More advanced ones work better, e.g., bigger layers are pruned
more than small layers (called “ERK’)

* Update schedule. Sparsification happens at a certain frequency during
training (btw, sparse training usually costs more epochs to converge)

E N d _to_ E N d * Drop criterion. The weights with the lowest magnitude are dropped.
* Grow criterion. The weights receiving the highest gradient will be re-added
(Dyn am |C) (zero-init). The number grown connections is the same as the dropped.
Sparse
Tra | n | n g (3) Drop (4) Grow
(2) Update
Schedule ’,«O
r nitialization Is Upd
Slzstsr‘i,t?uﬂ?l"\ L’ —> Itserg)ti:r:e? WT» —P>

no
Sparse

Training
Step

Evci, Utku, Trevor Gale, Jacob Menick, Pablo
Samuel Castro, and Erich Elsen. "Rigging the
lottery: Making all tickets winners." ICML 2020

Figure 1: Dynamic sparse training changes connectivity during training to aid optimization.

Model Sparsity

(per model)

Sparsification

/N

Weights Neurons
unstructured structured

(e.g., fine-grained) (e.g., blocked/strided)

"Sparsity”, in

broader terms

Neuron-like
(filters/channels/heads)

structured sparsity

affects inference + forward pass

Ephemeral Sparsity ..\./.

(per example)

Gradients Errors
g1 €1
gradient-based optimization

LI

Dropout
(Activations/Weights)

Optimizer
State

affects training

Activations Conditional computation

(e.g., ReLU) (route each example through a
inference + forward pass Different sparse subnetwork)

* Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A.
(2021). Sparsity in Deep Learning: Pruning and growth for
efficient inference and training in neural networks. J. Mach.
Learn. Res., 22(241), 1-124.

70 mmm Model sparsification for inference i
mw Model sparsification for training B
60 B Ephemeral sparsification
50 B Hardware acceleration for sparsity I
B Software acceleration for sparsity I
40 Transformer
ResNetl'
30 -
\" -I
20 . jB
Start of second Al winter
AlexNet =l
LSTM L
10 GPUs for DL l -
.. ! il
Q) m==m sy = —— — — 34—
DD O T ANNTOLOMNMNODDO T ANNMTOUODOMNMNODDOTNMTUOLOMNOWO O
OO0 OO OOO O OO0 ™ T ™M™ v v v v N
ONoONoONoONONoONoONONONoNoNo leleleoleolololololeoloNoleololoNeNeNoeNoNo NN
T rrEr T e AN AN ANANANANANANANANANNANANANNNNNNN

S a rS e N N * Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A.
p (2021). Sparsity in Deep Learning: Pruning and growth for
efficient inference and training in neural networks. J. Mach.

research is on fire! o ke Saia1) 1124

Sparsity May Cry Benchmark (SMC-Bench)

VI A

(ICLR’23) Large-scale, arduous and diverse benchmark for sparse NNs with 4 tasks and 12 datasets

Table 2: Summary of models and datasets that we used to evaluate on SMC-Bench.

Task | Datasets Models Source
CSQA RoBERTa Large Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)
Commonsense Reasoning WinoGrande RoBERTa Large Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)
RACE RoBERTa Large Facebook Al Research Sequence-to-Sequence Toolkit (Ott et al., 2019)
MAVPS GTS GitHub repository (Patel et al., 2021)
GitHub Repository (Patel et al., 2021)
Arithmetic Reasoning ASDiv-/ h 1tHub Repository (Patel et al., 2021)

{cHub Repository (Patel et al., 2021)

SVAMP

AlmesicN

GTS

ES

o SDarsitierkss

GitHub Repository (Patel et al., 2021)

ub Repository (Rives et al., 2021)

Protein Thermostability Prediction |y ip ioin (HP-S2C5) ~ ESM-IFI GitHub Repository (Rives et al., 2021)
| HotProtein (HP-S2C2) ESM-1B GitHub Repository (Rives et al., 2021)
| Meltome Atlas ESM-1B GitHub Repository (Rives et al., 2021)
2-to-2 mBART Facebook Al Research Sequence-to-Sequence Toolkit (Ott et al., 2019)
Multilingual Translation 5-to-5 mBART Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)
10-to-10 mBART

Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)

* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* Expensive 32-bit MAC (Multiply-ACcumulate) = Cheap 1-bit XNOR-Count

* “MAC == XNOR-Count”: when the weights and activations are +1 \
1s in bits

More About

Binarized weights

Quantization

* Idea: Training real-valued nets (W) treating binarization (W},) as noise
* Training W, is done by stochastic gradient descent

* Binarization (W,. - W),) occurs for each forward propagation
* On each of weights: W, = sign(WW,.)
« ... also on each activation: a;, = sign(a,)

Binary

N eura | * Gradients for W, is estimated from ;—w% [Bengio et al., 2013]
* “Straight-through estimator”: Ignore the binarization during backward!
Networks N

oW, aWbIIerﬁl

oL __ 8L1
da, Oayp la.|<1

* Cancelling gradients for better performance
* When the value is too large

* BNN yields 32x less memory compared to the baseline 32-bit DNNs
* ... also expected to reduce energy consumption drastically

» 23x faster on kernel execution times

B| Nna ry * BNN allows us to use XNOR kernels _ N T
* 3.4x faster than cuBLAS :
Neural 5
Operation MUL ADD
N etWO r kS 8bit Integer 0.2pJ 0.03p] :
32bit Integer 3.1pJ 0.1p]
16bit Floating Point 1.1pJ 0.4p] . .
32tbit Floating Point 3.7pJ 0.9pJ

W BASELINE KERNEL m CUBLAS/THEANO XNOR KERNEL

* BNN achieves comparable error rates over existing DNNs

MATRIX MULT. (5 MNIST MLP | MLP TEST ERROR (%)

f

Exit 3

1
Linear

|
Conv 3x3 BranChyNet

* Only execute a fraction of the ﬁl —
network per needed |
. Conv 3x3 1 Exit2 [~
Dyn dMiIC * Can enable both “input-dependent” I_ i
and “resource-dependent” forms Conv 3x3
Inference |
@v5x5
I— Conv 3x3 = Conv 3x3 4| Exit 1
Conv 5x5
|

Optimizer

A Y.

tl Energy Loss |

SkipNet

Real-World Efficient ML: Way to Go

* Jointly utilizing several compression means

* Also, can choose efficient “by-design” models (MobileNets, or even non-deep
models, etc.)

* Channel pruning is in fact very similar to NAS
* Data processing is often a key concern, maybe more important
* Hardware co-design is another key concern
* Resource constraints & user demands often change over time

* From single task to multi-task and lifelong learning ...

VI TA

Demo: Energy-Efficient UAV-Based Text Spotting System

 Task: UAV-based low-energy video
understanding (Raspberry Pi 3B+)

* QOur group has been leading the show!

e 2021 IEEE Low-Power Computer Vision (LPCV)
Challenge, 1st prize (video track) among 31
university & company teams that submitted 249
independent solutions

* 2020 IEEE Low-Power Computer Vision (LPCV)
Challenge, 2nd prize (video track), among ~ 90
solutions

(@ Only homogeneous regions

=)

—

@) Unlikely with texts (3 Poor-quality texts FEE (@ High-quality,
Vil - likely with texts

LLSL | e

Purdue

Processed by OCR

Dropped Dropped

[EFT

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

From Efficient Inference to
Efficient Training

Two type of demands dominate:

* ”"Personalization” (or adaptation, continual
learning) at the edge (resource-constrained
device): saving communication bandwidth
/energy & protecting data privacy etc.

* Mostly fine-tuning (new unseen data, etc.)

bigger models at the
(cloud server), while keep
relatively affordable training budget &
suppressing carbon footprint, etc.

* Both training from scratch, and transfer learning
(new task type, new data, etc.)

Edge-based Training: Lessons from Efficient Inference?

* Training v.s. Inference: one-pass Vv.s. iterative

* Lessons that we learned from Inference:
* Model parameters are not born equally, and many redundancies do exist
* Know your specific goal: saving memory, latency and energy are often not aligned
* To achieve energy goal, realistic energy models and/or hardware measurements are very helpful
e Consider a more “end-to-end” effort beyond just the model itself (data, hardware, architecture...)

* New Challenges posed for Training:
» Saving per-sample (mini-batch) complexity (both feed-forward and backward)

* The empirical convergence (how many iterations needed) matters more than per-MB complexity
» Data access/movement bottlenecks are (even more) crucial

E2-Train: Energy-Efficient CNN Training (NeurlPS’19)

Motivation:

Model-Level: SLU

Batch N

Data-Level: SMD Bit-level: PSG

“Three-Pronged” Approach:

* Data-Level: stochastic mini-batch m Accuracy (vs. Original One) | Energy Savings

dropping CIFAR-10 MobileNetV2 92.06% (vs. 92.47%) 88%
* Layer-Level: selective layer update o o 0
* Bit-Level: predictive sign gradient ResNet-110 93.01% (vs. 93.57%) 83%

descent CIFAR-100 MobileNetV2 71.61% (vs. 71.91%) 88%

ResNet-110 71.63% (vs. 71.60%) 84%

Efficiently Scaling and
Training from Scratch:
Mixture of Experts (MoEs)

MoE layer
1 f
| s B

N Introducing Pathways: A next-
generation Al architecture

Oct 28, 2021 Too often, machine learning systems overspecialize at individual tasks, when they could €

5 min read we're building Pathways—a new Al architecture that will handle many tasks at once, learn

[: reflect a better understanding of the world.

o Jeff Dean
Google Senior Fellow and SVP, Google Research

Shazeer M. et. al. “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts

Why MoE?

* MoE is a special type of sparsity (dynamic, structured, end-to-end)
* “Modalized” structure is naturally good for distributed training/parallelism
» “Block-level” sparsity is hardware-friendly
* “End-to-end” sparsity keeps the memory /compute low at any point of training

* MoE is also a special type of dynamic inference
* Dynamically activate an “input-dependent” subnetwork for a new test sample
* The activation is controlled by a routing network (top-k classifier, RL, hashing...)

* MoE can be straightforwardly extended to “divide and conquer”...
* Multi-task learning
* Multi-modality learning

Dense versus Sparse MoE Transformer

Add + Normalize]

t

FFN Layer]

T

Add + Normalize

1

Self-Attention

Dense Model

y1 OO y, OO

Add + Normalize

Add + Normalize]4—

))

Self-Attention

A
x; CCTITT]

"The"

T
x, OTTITT

“Dog"

[

Add + Normalize

]

1

[Sparse FFN Layer }

()

Add + Normalize

T

Self-Attention

X

Sparse Model

yq O 111 y2

A

o

Add + Normalize

| —

/

/'

/ e
(FFN1) (FFN2) [FFN 3| (FFN4) (FFN1) [FFN 2] [FFN 3] [FFN 4]
N\ N

~

—

Add + Normalize

Self-Attention

Xq

A\
\
T
y
T

"The"

X2

Fedus, William, Jeff Dean, and Barret Zoph. "A review of sparse expert models in deep

learning." arXiv preprint arXiv:2209.01667 (2022).

EHQ
u

“Dog"

Schematic of Routing Network (using top-k as exampke)

[Expert 1 } Expert 2
L)

Dot Product

ES E4 E3 E2 E1

Expert 3

Router Weights

0.3|-1.6| 0.1 | 0.8 -0.1

0.5 |-0.6/-1.1|-0.2 -0.4
1.2 [§ESIRORE 1.5 -1.1

Expert Weights

Router Scores

Expert 4

Token

Representations

1.3 |11 joi9

-0.7{0.1 (0.4

Normalized

Router Scores

/ 0.51

1. T2 T3 ™M T2 T3

313 | 014 | 0.74 o | 0.67 | 0.05 | 0.22

-0.25| 1.58 N{o0.05 003 05

-1.32 [1.97 | 01 1001|031 | 011
—y

2.25 | 2.61 | 0.02 o 10.27 1059 | 01

-2.81|-0.68 | -0.41 v [0.00 | 0.02 | 0.07

Many open
challenges remain
on routing!

* Expert load balancing

* Representational
Collapse

* ”In-situ” change
sparsity k?

LoRA: Low-Rank Fine-Tuning

h

A TR

Pretrained
Weights

= Rdxd

X | |

- - - - Recent success: fine-tune GenAl Text2Image
Hu, Edward J., Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,

Shean Wang, Lu Wang, and Weizhu Chen. “LoRA: Low- Models! (https://github.com/cloneofsimo/lora)
Rank Adaptation of Large Language Models.” ICLR 2022

https://github.com/cloneofsimo/lora

Sparse Transfer Learning using Lottery Ticket Hypothesis (NeurlPS'20, V‘TA
ICLR’21, CVPR’21, ...)

MIT News

ON CAMPUS AND AROUND THE WORLD < SUBSCRIBE

Shrinking massive neural networks used to model
Pre-training language

A new approach could lower computing costs and increase accessibility to
state-of-the-art natural language processing.

Daniel Ackerman | MIT News Office
December1, 2020

Dense Model

Take Home Message: LTH can find you a good mask on
pre-trained models (supervised or self-supervised), in NLP,
CV and even multi-modality, so the sparse subnetwork is
the same transferrable!

&

The University of Texas at Austin
Electrical and Computer
Engineering

Cockrell School of Engineering

