

Spring 2023

ADVANCED TOPICS IN COMPUTER VISION

Atlas Wang

Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin

https://vita-group.github.io/

ML researchers like to go BIG

Big NNs seem to be more capable at everything...

....While the world prefers going TINY

Deep Learning on a Budget

- Three Top Concerns:
 - Storage and Memory
 - Speed or Latency
 - Energy Efficiency
- The three goals all pursue "light weight"
- ... but they are often not aligned*
- ... so need to **consider all** in implementation
- ... and for both Inference and Training
- Broad economic viability requires energy efficient Al
- Energy efficiency of a brain is 100x better than current SOTA hardware!

Roundtrip flight b/w NY and SF (1 passenger) 1,984

Human life (avg. 1 year)

American life (avg. 1 year)

US car including fuel (avg. 1 lifetime)

Transformer (213M parameter w/ neural architecture search 126,000

11,023

626,155

Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

Model Compression

Training Phase:

- The easiest way to extract a lot of knowledge from the training data is to learn many different models in parallel.
- 3B: Big Data, Big Model, Big Ensemble
- Imagenet: 1.2 million pictures in 1,000 categories.
- AlexNet: ~ 240Mb, VGG16: ~550Mb

Testing Phase:

- Want small and specialist models.
- Minimize the amount of computation and the memory footprint.
- Real time prediction
- Even able to run on mobile devices.

Two Main Streams

- "Transfer": How to transfer knowledge from big general model (teacher) to small specialist models (student)?
 - Example: "Distilling the Knowledge in a Neural Network", G. Hinton et. al., 2015
- "Compress": How to reduce the size of the same model, during or after training, without losing much accuracy.
 - Example: "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", S. Han et. al., 2016
- Comparison: Knowledge Transfer provides a way to train a <u>new small model</u> inheriting from big general models, while Deep Compression Directly does the surgery on big models, using a pipeline: pruning, quantization & Huffman coding.

Knowledge Transfer/"Distillation": Main Idea

- Introduce "Soft targets" as one way to transfer the knowledge from big models.
 - Classifiers built from a softmax function have a great deal more information contained in them than just a classifier;
 - The correlations in the softmax outputs are very informative.

- Hard Target: the ground truth label (one-hot vector)
- Soft Target: $q_i = \frac{exp(z_i/T)}{\sum_{j} exp(z_j/T)}$ T is "temperature", z is logit
- More information in soft targets

cow	dog	cat	car	original hard
0	1	0		targets
.05	dog .3	cat	car .005	softened output of ensemble

Hinton's Observation: If we can extract the knowledge from the data using very big models or ensembles of models, it is quite easy to distill most of it into a much smaller model for deployment.

More follow-up observations: teachers can be weak, or even the same as student ...

Deep Compression: Main Idea (i)

Pruning

Deep Compression: Main Idea (ii)

Retrain to Recover Accuracy

Network pruning can save 9x to 13x parameters without drop in accuracy

Deep Compression: Main Idea (iii)

Weight Sharing (Trained Quantization)

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)

Deep Compression: Main Idea (iv)

Huffman Coding

More About Pruning

- Determining **low-saliency parameters**, given a pre-trained network
- Follows the framework proposed by LeCun et al. (1990):
 - 1. Train a deep model until convergence
 - 2. Delete "unimportant" connections w.r.t. a certain criteria
 - 3. Re-train the network
 - 4. Iterate to step 2, or stop

- Defining which connection is unimportant can vary
 - Weight magnitudes (L², L¹, ...)
 - Mean activation [Molchanov et al., 2016]
 - Avg. % of Zeros (APoZ) [Hu et al., 2016]
 - Low entropy activation [Luo et al., 2017]
 - ..

Human Brain Prunes too!

1000 Trillion Synapses

50 Trillion Synapses

This image is in the public domain

Newborn

This image is in the public domain

1 year old

500 Trillion Synapses

This image is in the public domagnetic domag

Adolescent

Optimal Brain Damage (OBD)

- Network pruning perturbs weights W by zeroing some of them
- How the loss L would be changed when W is perturbed?
- OBD approximates L by the 2^{nd} order Taylor series:

$$\delta L \simeq \underbrace{\sum_{i} \frac{\partial L}{\partial w_{i}} \delta w_{i}}_{\text{1st order}} + \underbrace{\frac{1}{2} \sum_{i} \frac{\partial^{2} L}{\partial w_{i}^{2}} \delta w_{i}^{2} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} L}{\partial w_{i} \partial w_{j}} \delta w_{i} \delta w_{j}}_{\text{2nd order}} + O(||\delta \mathbf{W}||^{3})$$

- Problem: Computing $H=\left(\frac{\partial L}{\partial w_i\partial w_j}\right)_{i,j}$ is usually intractable
 - Requires $O(n^2)$ on # weights
 - Neural networks usually have enormous number of weights
 - e.g. AlexNet: **60M** parameters \Rightarrow H consists \approx **3**. **6** \times **10**¹⁵ elements

Optimal Brain Damage (OBD)

- Problem: Computing $H=\left(\frac{\partial L}{\partial w_i\partial w_j}\right)_{i,j}$ is usually intractable
- Two additional assumptions for tractability

1. Diagonal approximation:
$$H = \frac{\partial^2 L}{\partial w_i \partial w_j} = 0$$
 if $i \neq j$

- **2. Extremal** assumption: $\frac{\partial L}{\partial w_i} = 0 \quad \forall i$
 - W would be in a local minima if it's pre-trained
- Now we get: $\delta L \simeq \frac{1}{2} \sum_i \frac{\partial^2 L}{\partial {w_i}^2} \delta w_i^2 + O(||\delta \mathbf{W}||^3)$
 - It only needs $\operatorname{diag}^i(H) \coloneqq \left(\frac{\partial^2 L}{\partial w_i^2}\right)_i$
- diag(H) can be computed in O(n), allowing a backprop-like algorithm
 - For details, see [LeCun et al., 1987]

Optimal Brain Damage (OBD)

How the loss L would be changed when W is perturbed?

$$L(\delta\mathbf{W})\simeq\frac{1}{2}\sum_i\frac{\partial^2L}{\partial{w_i}^2}\delta{w_i}^2=:\sum_i\frac{1}{2}h_{ii}\delta{w_i}^2$$
 • The saliency for each weight $\Rightarrow s_i\coloneqq\frac{1}{2}h_{ii}|w_i|^2$

- OBD shows robustness on pruning compared to magnitude-based deletion
- After re-training, the original test accuracy is recovered

- "Un-structured" weight-level pruning may not engage a practical speed-up
 - Despite of extremely high sparsity, actual speed-ups in GPU is limited

Non-structured sparsity (poor data pattern)

	7244		
--	------	--	--

Structured sparsity (regular data pattern)

5× speedup after concatenation of nonzero rows and columns

Structured sparsity

• Structured sparsity can be induced by adding group-lasso regularization

$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

• Filter-wise and channel-wise: # filters # channels $R_g(\mathbf{W}^{(l)}) = \sum_{n_l=1}^{N_l} \|\mathbf{W}_{n_l,:,:,:}^{(l)}\|_2 + \sum_{c_l=1}^{C_l} \|\mathbf{W}_{:,c_l,:,:}^{(l)}\|_2$

Table 1: Results after penalizing unimportant filters and channels in *LeNet*

LeNet #	Error	Filter # §	Channel # §	FLOP §	Speedup §
1 (baseline)	0.9%	20-50	1-20	100%—100%	$1.00 \times -1.00 \times$
2	0.8%	5—19	1—4	25%—7.6%	$1.64 \times -5.23 \times$
3	1.0%	3—12	1—3	15%—3.6%	$1.99 \times -7.44 \times$

[§]In the order of conv1—conv2

Fewer but smoother feature extractors

Figure 7: Overview of structural sparsification schedules.

Sparsity beyond post-training compression

• Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res., 22(241), 1-124.

Lottery
Ticket
Hypothesis

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations.

- Winning Ticket gives
 - · Better or same results
 - · Shorter or same training time
 - Notably fewer parameters
 - Is trainable from the beginning

Searching for Tickets: Iterative Magnitude Pruning

Lottery
Ticket
Hypothesis

Sparsification

"Sparsity", in broader terms

• Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res., 22(241), 1-124.

Sparse NN research is on fire!

• Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res., 22(241), 1-124.

Sparsity May Cry Benchmark (SMC-Bench)

(ICLR'23) Large-scale, arduous and diverse benchmark for sparse NNs with 4 tasks and 12 datasets

Table 2: Summary of models and datasets that we used to evaluate on SMC-Bench.

Task	Datasets	Models	Source
Commonsense Reasoning	CSQA WinoGrande RACE	RoBERTa Large RoBERTa Large RoBERTa Large	Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019) Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019) Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)
	MAVPS	GTS Graph2Tree	GitHub repository (Patel et al., 2021) GitHub Repository (Patel et al., 2021)
Arithmetic Reasoning	ASDiv-	Oraph2 ree	Gil-Hub Repository (Patel et al., 2021) Gil-Hub Repository (Patel et al., 2021)
	SVAMP ST.L.	GTS Grava Tree TAN:	GitHub Repository (Patel et al., 2021) GitHub Repository (Patel et al., 2021) Hub A it To F to (1512)
Protein Thermostebility Prediction		ESM-1	CHub Repository (Rives et al., 2021)
Protein Thermostability Prediction	HotProtein (HP-S ² C5)	ESM-IF1	GitHub Repository (Rives et al., 2021)
	HotProtein (HP-S ² C2)	ESM-1B	GitHub Repository (Rives et al., 2021)
	Meltome Atlas	ESM-1B	GitHub Repository (Rives et al., 2021)
Multilingual Translation	2-to-2 5-to-5 10-to-10	mBART mBART mBART	Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019) Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019) Facebook AI Research Sequence-to-Sequence Toolkit (Ott et al., 2019)

- Neural networks can be even binarized (+1 or -1)
 - DNNs trained to use binary weights and binary activations
- Expensive 32-bit MAC (Multiply-ACcumulate) ⇒ Cheap 1-bit XNOR-Count
 - "MAC == XNOR-Count": when the weights and activations are ± 1

1s in bits

More About Quantization

Binary Neural Networks

- Idea: Training real-valued nets (W_r) treating binarization (W_b) as noise
 - Training W_r is done by stochastic gradient descent
- Binarization ($W_r \to W_b$) occurs for each forward propagation
 - On each of weights: $W_b = \operatorname{sign}(W_r)$
 - ... also on each **activation**: $a_b = \operatorname{sign}(a_r)$
- Gradients for W_r is estimated from $\frac{\partial L}{\partial W_b}$ [Bengio et al., 2013]
 - "Straight-through estimator": Ignore the binarization during backward!

$$\frac{\partial L}{\partial W_r} = \frac{\partial L}{\partial W_b} \mathbf{1}_{|W_r| \le 1}$$

$$\frac{\partial L}{\partial a_r} = \frac{\partial L}{\partial a_b} \mathbf{1}_{|a_r| \le 1}$$

- Cancelling gradients for better performance
 - When the value is too large

Binary Neural Networks

- BNN yields 32x less memory compared to the baseline 32-bit DNNs
 - ... also expected to reduce energy consumption drastically
- 23x faster on kernel execution times
 - BNN allows us to use XNOR kernels
 - 3.4x faster than cuBLAS

Operation	MUL	ADD
8bit Integer	0.2pJ	0.03pJ
32bit Integer	3.1pJ	0.1 pJ
16bit Floating Point	1.1pJ	0.4pJ
32tbit Floating Point	3.7pJ	0.9 pJ

BNN achieves comparable error rates over existing DNNs

Dynamic Inference

- Only execute a fraction of the network per needed
- Can enable both "input-dependent" and "resource-dependent" forms

Real-World Efficient ML: Way to Go

- Jointly utilizing several compression means
 - Also, can choose efficient "by-design" models (MobileNets, or even non-deep models, etc.)
 - Channel pruning is in fact very similar to NAS
- Data processing is often a key concern, maybe more important
- Hardware co-design is another key concern
- Resource constraints & user demands often change over time
- From single task to multi-task and lifelong learning ...

Demo: Energy-Efficient UAV-Based Text Spotting System

- Task: UAV-based low-energy video understanding (<u>Raspberry Pi 3B+</u>)
- Our group has been leading the show!
 - 2021 IEEE Low-Power Computer Vision (LPCV)
 Challenge, 1st prize (video track) among 31
 university & company teams that submitted 249
 independent solutions
 - 2020 IEEE Low-Power Computer Vision (LPCV)
 Challenge, 2nd prize (video track), among ~ 90
 solutions

2020 Low-Power Computer Vision Challenge

From Efficient Inference to Efficient Training

Two type of demands dominate:

- "Personalization" (or adaptation, continual learning) at the edge (resource-constrained device): saving communication bandwidth /energy & protecting data privacy etc.
 - Mostly **fine-tuning** (new unseen data, etc.)
- "Scaling up" bigger models at the data center (resource-rich cloud server), while keep relatively affordable training budget & suppressing carbon footprint, etc.
 - Both training from scratch, and transfer learning (new task type, new data, etc.)

Edge-based Training: Lessons from Efficient Inference?

• Training v.s. Inference: one-pass feedforward v.s. iterative forward + backward

Lessons that we learned from Inference:

- Model parameters are not born equally, and many redundancies do exist
- Know your specific goal: saving memory, latency and energy are often not aligned
- To achieve energy goal, realistic energy models and/or hardware measurements are very helpful
- Consider a more "end-to-end" effort beyond just the model itself (data, hardware, architecture...)

New Challenges posed for Training:

- Saving per-sample (mini-batch) complexity (both feed-forward and backward)
- The empirical convergence (how many iterations needed) matters more than per-MB complexity
- Data access/movement bottlenecks are (even more) crucial

E2-Train: Energy-Efficient CNN Training (NeurIPS'19)

Motivation:

"Three-Pronged" Approach:

- Data-Level: stochastic mini-batch dropping
- Layer-Level: selective layer update
- Bit-Level: predictive sign gradient descent

Datasets	Models	Accuracy (vs. Original One)	Energy Savings
CIFAR-10	MobileNetV2	92.06% (vs. 92.47%)	88%
	ResNet-110	93.01% (vs. 93.57%)	83%
CIFAR-100	MobileNetV2	71.61% (vs. 71.91%)	88%
	ResNet-110	71.63% (vs. 71.60%)	84%

Efficiently Scaling and Training from Scratch: Mixture of Experts (MoEs)

Why MoE?

- MoE is a special type of sparsity (dynamic, structured, end-to-end)
 - "Modalized" structure is naturally good for distributed training/parallelism
 - "Block-level" sparsity is hardware-friendly
 - "End-to-end" sparsity keeps the memory /compute low at any point of training
- MoE is also a special type of dynamic inference
 - Dynamically activate an "input-dependent" subnetwork for a new test sample
 - The activation is controlled by a **routing network** (top-k classifier, RL, hashing...)
- MoE can be straightforwardly extended to "divide and conquer"...
 - Multi-task learning
 - Multi-modality learning

Dense versus Sparse MoE Transformer

Fedus, William, Jeff Dean, and Barret Zoph. "A review of sparse expert models in deep learning." arXiv preprint arXiv:2209.01667 (2022).

Schematic of Routing Network (using top-k as example)

Many open challenges remain on routing!

- Expert load balancing
- Representational Collapse
- "In-situ" change sparsity k?

•

LoRA: Low-Rank Fine-Tuning

Recent success: fine-tune GenAl Text2Image Models! (https://github.com/cloneofsimo/lora)

Sparse Transfer Learning using Lottery Ticket Hypothesis (NeurIPS'20, ICLR'21, CVPR'21, ...)

Take Home Message: LTH can find you a good mask on pre-trained models (supervised or self-supervised), in NLP, CV and even multi-modality, so the sparse subnetwork is **the same transferrable!**

SUBSCRIBE

Shrinking massive neural networks used to model language

A new approach could lower computing costs and increase accessibility to state-of-the-art natural language processing.

Daniel Ackerman | MIT News Office December 1, 2020

